Shopping: Real Estate |  Costumes  |  Guitars
This Issue Archived Articles Blog About Us Contact Us
SEARCH


Spark Plugs Overview

The story on the plug.

Courtesy of NGK

Click on pics to view larger images


Spark plugs are one of the most misunderstood components of an engine. Numerous questions have surfaced over the years, leaving many people confused.

This article is designed to assist the technician, hobbyist, or race mechanic in understanding, using, and troubleshooting spark plugs. The information contained in this guide applies to all types of internal combustion engines: two stroke engines, rotary engines, high performance/racing engines and street vehicles.

Spark plugs are the "window" into your engine (your only eyewitness to the combustion chamber), and can be used as a valuable diagnostic tool. Like a patient's thermometer, the spark plug displays symptoms and conditions of the engine's performance. The experienced tuner can analyse these symptoms to track down the root cause of many problems, or to determine air/fuel ratios.

Spark Plug Basics

Click for larger image

The spark plug has two primary functions:

  • To ignite the air/fuel mixture
  • To remove heat from the combustion chamber

Spark plugs transmit electrical energy that turns fuel into working energy. A sufficient amount of voltage must be supplied by the ignition system to cause it to spark across the spark plug's gap. This is called "Electrical Performance."

The temperature of the spark plug's firing end must be kept low enough to prevent pre-ignition, but high enough to prevent fouling. This is called "Thermal Performance", and is determined by the heat range selected.

It is important to remember that spark plugs do not create heat, they can only remove heat. The spark plug works as a heat exchanger by pulling unwanted thermal energy away from the combustion chamber, and transferring the heat to the engine's cooling system. The heat range is defined as a plug's ability to dissipate heat.

The rate of heat transfer is determined by:

  • The insulator nose length
  • Gas volume around the insulator nose
  • The materials/construction of the centre electrode and porcelain insulator

A spark plug's heat range has no relationship to the actual voltage transferred though the spark plug. Rather, the heat range is a measure of the spark plug's ability to remove heat from the combustion chamber.

Heat rating and heat flow path of NGK Spark Plugs

Click for larger image

The insulator nose length is the distance from the firing tip of the insulator to the point where insulator meets the metal shell. Since the insulator tip is the hottest part of the spark plug, the tip temperature is a primary factor in pre-ignition and fouling. Whether the spark plugs are fitted in a lawnmower, boat, or a racecar, the spark plug tip temperature must remain between 500 -850 degrees C.

If the tip temperature is lower than 500 degrees C, the insulator area surrounding the centre electrode will not be hot enough to burn off carbon and combustion chamber deposits. These accumulated deposits can result in spark plug fouling leading to misfire.

If the tip temperature is higher than 850 degrees C, the spark plug will overheat which may cause the ceramic around the centre electrode to blister and the electrodes to melt. This may lead to pre-ignition/detonation and expensive engine damage.

In identical spark plug types, the difference from one heat range to the next is the ability to remove approximately 70 to 100 degrees C from the combustion chamber. A projected style spark plug firing tip temperature is increased by 10 to 20 degrees C.

Tip Temperature and Firing End Appearance

Click for larger image

The firing end appearance also depends on the spark plug tip temperature. There are three basic diagnostic criteria for spark plugs: good, fouled and overheated. The borderline between the fouling and optimum operating regions (500 degrees C) is called the spark plug self-cleaning temperature. The temperature at this point is where the accumulated carbon and combustion deposits are burned off.

Bearing in mind that the insulator nose length is a determining factor in the heat range of a spark plug, the longer the insulator nose, the less heat is absorbed, and the further the heat must travel into the cylinder head water journals. This means the plug has a higher internal temperature, and is said to be a "hot" plug. A hot spark plug maintains a higher internal operating temperature to burn off oil and carbon deposits, and has no relationship to spark quality or intensity.

Conversely, a "cold" spark plug has a shorter insulator nose and absorbs more combustion chamber heat. This heat travels a shorter distance, and allows the plug to operate at a lower internal temperature. A colder heat range is necessary when the engine is modified for performance, subjected to heavy loads, or is run at high rpm for a significant period of time. The colder type removes heat more quickly, and will reduce the chance of pre-ignition/detonation and melting or damage to the firing end. (Engine temperature can affect the spark plug's operating temperature, but not the spark plug's heat range).

Influences on Spark Plug Operation

Click for larger image

Below is a list of some of the possible external influences on a spark plug's operating temperatures. The following symptoms or conditions may have an effect on the actual temperature of the spark plug. The spark plug cannot create these conditions, but it must be able to cope with the levels of heat...if not, the performance will suffer and engine damage can occur.



1. Air/Fuel Mixtures seriously affect engine performance and spark plug operating temperatures.

  • Rich air/fuel mixtures cause tip temperature to drop, causing fouling and poor driveability
  • Lean air/fuel mixtures cause plug tip and cylinder temperature to increase, resulting in pre-ignition, detonation, and possibly serious spark plug and engine damage
  • It is important to read spark plugs many times during the tuning process to achieve the optimum air/fuel mixture
Click for larger image

2. Higher Compression Ratios/Forced Induction will elevate spark plug tip and in-cylinder temperatures

  • Compression can be increased by performing any one of the following modifications:

    a) reducing combustion chamber volume (eg domed pistons, smaller chamber heads, milling heads, etc.)

    b) adding forced induction (nitrous, turbocharging or supercharging)

    c) camshaft change
  • As compression increases, a colder heat range plug, higher fuel octane, and careful attention to ignition timing and air/fuel ratios are necessary. Failure to select a colder spark plug can lead to spark plug/engine damage
Click for larger image

3. Advancing Ignition Timing

Advancing ignition timing by 10 degrees causes tip temperature to increase by approx. 70-100 degrees C

4. Engine Speed and Load

Increases in firing-end temperature are proportional to engine speed and load. When travelling at a consistent high rate of speed, or carrying/pushing very heavy loads, a colder heat range spark plug should be installed.

Types of Abnormal Combustion

1. Pre-ignition

  • Defined as: ignition of the air/fuel mixture before the pre-set ignition timing mark
  • Caused by hot spots in the combustion chamber...can be caused (or amplified) by over-advanced timing, too hot a spark plug, low octane fuel, lean air/fuel mixture, too high compression, or insufficient engine cooling
  • A change to a higher octane fuel, a colder plug, richer fuel mixture, or lower compression may be in order
  • You may also need to retard ignition timing, and check the vehicle's cooling system
  • Pre-ignition usually leads to detonation; pre-ignition and detonation are two separate events
Click for larger image

2. Detonation

  • The spark plug's worst enemy! (Besides fouling)
  • Can break insulators or break off ground electrodes
  • Pre-ignition most often leads to detonation
  • In a racing engine plug tip temperatures can spike to over 1650 degrees C during the combustion process
  • Most frequently caused by hot spots in the combustion chamber. Hot spots will allow the air/fuel mixture to pre-ignite. As the piston is being forced upward by mechanical action of the connecting rod, the pre-ignited explosion will try to force the piston downward. If the piston can't go up (because of the force of the premature explosion) and it can't go down (because of the upward motion of the connecting rod), the piston will rattle from side to side. The resulting shock wave causes an audible pinging sound. This is detonation.
  • Most of the damage than an engine sustains when "detonating" is from excessive heat
  • The spark plug is damaged by both the elevated temperatures and the accompanying shock wave, or concussion

3. Misfires

  • A spark plug is said to have misfired when enough voltage has not been delivered to light off all fuel present in the combustion chamber at the proper moment of the power stroke (a few degrees before top dead centre)
  • A spark plug can deliver a weak spark (or no spark at all) for a variety of reasons...defective coil(s), too much compression with incorrect plug gap, dry fouled or wet fouled spark plugs, insufficient ignition timing, etc.
  • Slight misfires can cause a loss of performance for obvious reasons (if fuel is not lit, no energy is being released)
  • Severe misfires will cause poor fuel economy, poor driveability, and can lead to engine damage

4. Fouling

  • Will occur when spark plug tip temperature is insufficient to burn off carbon, fuel, oil or other deposits
  • Will cause spark to leach to metal shell...no spark across plug gap will cause a misfire
  • Wet-fouled spark plugs must be changed...spark plugs will not fire
  • Dry-fouled spark plugs can sometimes be cleaned by bringing engine up to operating temperature
  • Before changing fouled spark plugs, be sure to eliminate root cause of fouling

http://www.ngksparkplugs.com/

Did you enjoy this article?

Please consider supporting AutoSpeed with a small contribution. More Info...


Share this Article: 

More of our most popular articles.
How does Hz = stiffness?

DIY Tech Features - 12 November, 2013

Measuring the stiffness of structures by vibration testing

Do it yourself development of an aero undertray

DIY Tech Features - 3 June, 2004

Undertrays, Spoilers & Bonnet Vents, Part 2

Getting planning approval

DIY Tech Features - 7 February, 2012

A New Home Workshop, Part 3

Is it time for a new direction in car modification?

Special Features - 13 May, 2008

Where to From Here?

How to use relays - some of the most useful electrical components ever!

DIY Tech Features - 28 November, 2005

Using Relays

Gorgeous and fast

Special Features - 3 June, 2014

The Auto Union Racing Cars

A new low cost data logger

DIY Tech Features - 30 June, 2009

Five Channel USB Data Logger, Part 1

Tweaking the engine management to run non-standard mixtures in closed loop

DIY Tech Features - 12 January, 2005

Altering Closed Loop Mixtures

Important differences to intercooling petrol engine turbos

Technical Features - 10 January, 2008

Diesel Intercooling

How to organise your home workshop for best results

DIY Tech Features - 25 June, 2008

Laying Out a Home Workshop

Copyright © 1996-2020 Web Publications Pty Limited. All Rights ReservedRSS|Privacy policy|Advertise
Consulting Services: Magento Experts|Technologies : Magento Extensions|ReadytoShip