Shopping: Real Estate |  Costumes  |  Guitars
This Issue Archived Articles Blog About Us Contact Us
SEARCH


Metal Properties

The basics

by Julian Edgar

Click on pics to view larger images


This article was first published in 2007.

We all know that different metals have different properties. Bend a piece of aluminium, and then bend a piece of steel that’s the same size, and differences become immediately apparent. But try to use this knowledge to select, say, the best type of steel for an anti-roll bar, and it all starts to become very difficult indeed. In fact, before you can even start selecting the best material for the job, you need to know what characteristics there are, and how they vary.

So here’s a brief, easy to understand coverage of the main properties that you need to know about.

Tensile Strength

Click for larger image

Tensile strength is the amount of smoothly applied pull that will stretch a piece of metal so far that it breaks apart.

The way it is most commonly expressed is in psi, that is, pounds per square inch. If the piece of metal being stretched by the horses is one square inch in area, and the horses can apply a pull of 3000 pounds before it breaks, the tensile strength of the material is 3000 psi.

Elasticity

Click for larger image

Most metals are not brittle – they bend before they break. For example, a piece of steel subjected to the tensile test described above will stretch before it breaks. Elasticity refers to the deformation that the material can experience under load and yet still return to normal when the load is removed.

To put this another way: an elastic specimen returns to its original shape after the load has been removed. If the material does not return to its original shape after the load has been removed, it has exceeded its elastic limit and has started to yield. (See also Making Things, Part 6 .) Normally, a metal that in design use has started to yield is said to have failed.

Before we go any further, think about just the two characteristics of tensile strength and elasticity. A suspension arm may be made from material with a high tensile strength and high elasticity. That means it won’t break, but it may deflect a long way under loads, so changing the suspension geometry. A spring steel, for example, has high elasticity and high tensile strength. It’s not suitable.

But a metal with high tensile strength may be too inelastic – rather than deflecting, it breaks off. Again, it’s not suitable for a suspension arm.

Ductility

Click for larger image

The ductility of a material refers to the degree to which it can be permanently deformed without failure. That doesn’t sound like a property that’s desirable - but in many applications it is. If you need to bend the material, or shape it in a press, you want the material to have sufficient ductility that it doesn’t crack during this forming process.

Some high strength steels being used in today’s car bodies have high tensile strength and low elasticity. However, they also have low ductility, meaning that, if involved in an accident, they cannot be panel-beaten back into shape. (See Advanced High Strength Steels, Part 1 and Ultra High Strength Steels, Part 2.)

Another way of thinking about ductility is to take the example of a material that has very low ductility - we call it brittle. A brittle substance is one that fails without appreciable deformation. For example, carbon fibre is far more brittle than nearly all steels. Brittle substances do not give much warning before failure.

Hardness

Click for larger image

Hardness refers to the resistance that the material presents to being penetrated by another material.

It’s easiest to understand if some of the tests for harness are described. In one, test, a hardened steel ball is pushed into the material by a known force. How far the ball penetrates, as indicated by the diameter of the indent, is measurement of the hardness. Another type of hardness test uses a diamond-tipped pyramid that is forced into the material.

Interrelationships

If the hardness a piece of steel is increased (eg by a post-production hardening process), the tensile strength will also increase. (But that doesn’t mean that all hard materials have high tensile strength!) The hardness/strength relationship shows how if one characteristic is altered, other characteristics will also change. This means that, for a given application, you need to consider all characteristics, not just focus on one.

No material has all the most desirable characteristics for an application – there will always need to be trade-offs. For example, if the material has to be deformed to make the finished product, it will need to be sufficiently ductile. If a wear surface is present, it will need to be hard. It might also need to have high tensile strength, or be high (or low) in elasticity.

Click for larger image

A very high tensile bolt may be too brittle for the application, or a metal might be too hard for the tools that need to cut it.

There are no easy answers in metals selection, but use the ideas of tensile strength, ductility, elasticity and hardness when talking to experts about the best material for the application.

Did you enjoy this article?

Please consider supporting AutoSpeed with a small contribution. More Info...


Share this Article: 

More of our most popular articles.
DIY and commercially available vortex generators

Special Features - 10 October, 2006

Blowing the Vortex, Part 3

Putting a super-bright LED interior light in your car

DIY Tech Features - 21 July, 2008

Upgrading to LED Interior Lighting

Exhaust Gas Recirculation and improving fuel economy!

Technical Features - 20 May, 2008

EGR Comeback

Refining a light-weight pneumatic / hydraulic suspension system

DIY Tech Features - 13 July, 2010

Chalky, Part 9

Inside the construction of some aluminium cars

Technical Features - 2 September, 2008

Aluminium Cars

Introducing... Vortex Generators!

Special Features - 26 September, 2006

Blowing the Vortex, Part 1

Building electronic kits

DIY Tech Features - 10 February, 2009

How to Electronically Modify Your Car, Part 9

Simple and cheap but these gauge readings can save you a lot of time

DIY Tech Features - 5 January, 2005

Using a Vacuum Gauge for Engine Diagnostics

What are the risks and benefits?

Special Features - 6 August, 2013

Children and home workshops

How racing rules should be re-written to help again develop relevant technology

Special Features - 24 November, 2009

Making Racing Cars Relevant Again...

Copyright © 1996-2020 Web Publications Pty Limited. All Rights ReservedRSS|Privacy policy|Advertise
Consulting Services: Magento Experts|Technologies : Magento Extensions|ReadytoShip